

An Interesting result in ER Network

王晨凯 2022.12.28

• Part1: Generate an ER network with specific $\langle k \rangle$

• Part2: For the generated ER network, calculate P_S by simulation and numerical method and do a comparison

• Part3: The interesting result in the evolution of ER network

• G(n, l) model consists of *n* nodes connected by *l* randomly placed edges

• *G*(*n*, *p*) model consists of *n* nodes and edges linking each pair of nodes with probability *p*

Part 1: Generate ER network

Algorithm 1 Generate ER network

Require: N, p

- 1: Create N nodes
- 2: for node *i* do
- 3: for node j < i do
- 4: generate random number u from U(0, 1)
- 5: if u < p then
- 6: add an edge between node i and j
- 7: end if
- 8: end for
- 9: end for

Ensure: network G

N = 50, p = 0.6

Part 2: obtain *P_S* **by simulation**

 P_S : Randomly choose a node, the probability that the node belongs to a community of size *s*

$$\langle k \rangle = \frac{1}{n} \sum_{i=1}^{n} k_i = p(n-1)$$

Set < k > = 0.5

Generate ER networks from $G\left(100, \frac{0.5}{99}\right)$ 1000 times

Part 2: Obtain *P_S* **by numerical method**

$$\begin{split} P_s &= \frac{1}{2\pi i} \oint \frac{H_0(z)}{z^{s+1}} \, \mathrm{d}z \quad \text{definition} \\ & \sqrt{z} = e^{i\theta} \\ P_s &= \frac{1}{2\pi} \int_0^{2\pi} \frac{H_0\left(\mathrm{e}^{i\theta}\right)}{\mathrm{e}^{i\theta s}} \, \mathrm{d}\theta \\ & \sqrt{\text{split the interval}} \\ P_s &\approx \frac{1}{2\pi} \sum_{k=0}^{N-1} \frac{H_0\left(\mathrm{e}^{i\frac{2k\pi}{N}}\right)}{\mathrm{e}^{i\frac{2k\pi s}{N}}} \times \frac{2\pi}{N} \end{split}$$

$$G_0(x) = \sum_k p_k x_k = (1-p+px)^{N-1}$$

$$G_1(x) = \frac{G_0'(x)}{G_0'(1)} = (1-p+px)^{N-2}$$

$$\begin{cases} H_1(x)=xG_1(H_1(x))\\ H_0(x)=xG_0(H_1(x)) \end{cases}$$

Part 2: result and conclusion

Size s	P_s from simulation	P_s from numerical calculation]
1	0.6020	0.6088	$]_{(}$
2	0.1921	0.1853]`
3	0.0882	0.0838	
4	0.0460	0.0448]
5	0.0235	0.0262	
6	0.0171	0.0163](
7	0.0102	0.0106]
8	0.0076	0.0071]
9	0.0045	0.0048	
10	0.0035	0.0034	$]_{i}$
11	0.0028	0.0024](
12	0.0006	0.0017	
13	0.0013	0.0012	
14	0.0000	0.0009	
15	0.0000	0.0007	
16	0.0000	0.0005	

(1)The results from two different methods are consistent;

(2)The results are closer when size *s* is small;

(3)When *s* is big, the numerical calculation method will give a non-zero result while the simulation will give 0.

Part 3: The interesting result in the evolution of ER network

Let $p = \frac{1-\varepsilon}{n}$, where $\varepsilon > 0$ is a small enough constant and let $G \sim G(n, p)$. Then **w.h.p.** all connected components of *G* are of size at most $\frac{7}{\epsilon^2} lnn$.

Let $p = \frac{1+\varepsilon}{n}$, then **w.h.p.** *G* has a connected component with at least $\frac{\varepsilon n}{2}$ nodes.

There exist a phase transition at $p = \frac{1}{n}!$

(1)
$$p = 0.003$$
, $n_g = 6$, $n_g/n = 0.04$

(2) $p = 0.006, n_g = 15, n_g/n = 0.1 \leftrightarrow$

a simulation of ER network evolution with n = 150 $(p = \frac{1}{150} \approx 0.007)$

Thanks for listening!